Sabtu, 20 Juni 2015

ADA APA DENGAN GUNUNG SINABUNG?


Gunung Sinabung (bahasa Karo: Deleng Sinabung) adalah gunung api di Dataran Tinggi Karo, Kabupaten Karo, Sumatera Utara, Indonesia. Sinabung bersama Gunung Sibayak di dekatnya adalah dua gunung berapi aktif di Sumatera Utara dan menjadi puncak tertinggi di provinsi itu. Ketinggian gunung ini adalah 2.460 meter.

Gunung ini tidak pernah tercatat meletus sejak tahun 1600,  tetapi mendadak aktif kembali dengan meletus pada tahun 2010. Letusan terakhir gunung ini terjadi sejak September 2013 dan berlangsung hingga kini.

Agustus 2010

Pada 27 Agustus 2010, gunung ini mengeluarkan asap dan abu vulkanis.  Pada tanggal 29 Agustus 2010 dini hari sekitar pukul 00.15 WIB (28 Agustus 2010, 17.15 UTC), gunung Sinabung mengeluarkan lava.

Status gunung ini dinaikkan menjadi Awas.  Dua belas ribu warga disekitarnya dievakuasi dan ditampung di 8 lokasi. Abu Gunung Sinabung cenderung meluncur dari arah barat daya menuju timur laut.  Sebagian Kota Medan juga terselimuti abu dari Gunung Sinabung.

Bandar Udara Polonia di Kota Medan dilaporkan tidak mengalami gangguan perjalanan udara.
Satu orang dilaporkan meninggal dunia karena gangguan pernapasan ketika mengungsi dari rumahnya.

September 2010

Pada tanggal 3 September, terjadi 2 letusan. Letusan pertama terjadi sekitar pukul 04.45 WIB sedangkan letusan kedua terjadi sekitar pukul 18.00 WIB. Letusan pertama menyemburkan debu vuklkanis setinggi 3 kilometer. Letuasn kedua terjadi bersamaan dengan gempa bumi vulkanis yang dapat terasa hingga 25 kilometer di sekitar gunung ini.

Pada tanggal 7 September, Gunung Sinabung kembali metelus. Ini merupakan letusan terbesar sejak gunung ini menjadi aktif pada tanggal 29 Agustus 2010. Suara letusan ini terdengar sampai jarak 8 kilometer. Debu vulkanis ini tersembur hingga 5.000 meter di udara.

Letusan 2013—2014

Pada tahun 2013, Gunung Sinabung meletus kembali, sampai 18 September 2013, telah terjadi 4 kali letusan. Letusan pertama terjadi ada tanggal 15 September 2013 dini hari, kemudian terjadi kembali pada sore harinya. Pada 17 September 2013, terjadi 2 letusan pada siang dan sore hari. Letusan ini melepaskan awan panas dan abu vulkanik. Tidak ada tanda-tanda sebelumnya akan peningkatan aktivitas sehingga tidak ada peringatan dini sebelumnya. Hujan abu mencapai kawasan Sibolangit dan Berastagi. Tidak ada korban jiwa dilaporkan, tetapi ribuan warga pemukiman sekitar terpaksa mengungsi ke kawasan aman.

Akibat peristiwa ini, status Gunung Sinabung dinaikkan ke level 3 menjadi Siaga. Setelah aktivitas cukup tinggi selama beberapa hari, pada tanggal 29 September 2013 status diturunkan menjadi level 2, Waspada. Namun demikian, aktivitas tidak berhenti dan kondisinya fluktuatif.
Memasuki bulan November, terjadi peningkatan aktivitas dengan letusan-letusan yang semakin menguat, sehingga pada tanggal 3 November 2013 pukul 03.00 status dinaikkan kembali menjadi Siaga. Pengungsian penduduk di desa-desa sekitar berjarak 5 km dilakukan.

Letusan-letusan terjadi berkali-kali setelah itu, disertai luncuran awan panas sampai 1,5 km. Pada tanggal 20 November 2013 terjadi enam kali letusan sejak dini hari. Erupsi (letusan) terjadi lagi empat kali pada tanggal 23 November 2013 semenjak sore, dilanjutkan pada hari berikutnya, sebanyak lima kali. Terbentuk kolom abu setinggi 8000 m di atas puncak gunung. Akibat rangkaian letusan ini, Kota Medan yang berjarak 80 km di sebelah timur terkena hujan abu vulkanik. Pada tanggal 24 November 2013 pukul 10.00 status Gunung Sinabung dinaikkan ke level tertinggi, level 4 (Awas). Penduduk dari 21 desa dan 2 dusun harus diungsikan.

Gunung Sinabung, tanggal 29 Januari 2014

Status level 4 (Awas) ini terus bertahan hingga memasuki tahun 2014. Guguran lava pijar dan semburan awan panas masih terus terjadi sampai 3 Januari 2014. Mulai tanggal 4 Januari 2014 terjadi rentetan kegempaan, letusan, dan luncuran awan panas terus-menerus sampai hari berikutnya. Hal ini memaksa tambahan warga untuk mengungsi, hingga melebihi 20 ribu orang.
Setelah kondisi ini bertahan terus, pada minggu terakhir Januari 2014 kondisi Gunung Sinabung mulai stabil dan direncanakan pengungsi yang berasal dari luar radius bahaya (5 km) dapat dipulangkan. Namun demikian, sehari kemudian 14 orang ditemukan tewas dan 3 orang luka-luka terkena luncuran awan panas ketika sedang mendatangi Desa Suka Meriah, Kecamatan Payung yang berada dalam zona bahaya I.

Gunung Sinabung  5 Maret 2015

kembali meletus dan memuntahkan abu vulkanik setinggi 2.000 meter ke arah selatan. Letusan Kamis (5/3/2015) pukul 08.20 WIB ini juga dibarengi dengan luncuran awan panas sejauh 3.500 meter.  Pada saat letusan terjadi, angin mengarah ke barat. Dampaknya, desa yang berada di daerah barat dihujani abu vulkanik yang cukup tebal. Sejak pukul 00.00 WIB hingga pukul 12.00 WIB, terjadi tujuh kali guguran awan panas.  Petugas Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) Arif mengatakan, kegempaan Gunung Sinabung masih sangat tinggi.

Pos PVMBG mencatat, hingga pukul 12.00 WIB telah terjadi 72 kali gempa guguran, 23 kali gempa hybrid, 18 kali gempa low frequency, satu kali gempa vulkanik, satu kali gempa tektonik jauh, dan tremor terjadi terus menerus. Status Gunung Sinabung masih Siaga Level III. Pos PVMBG mengimbau warga agar meningkatkan kewaspadaan.


Letusan 17 Juni 2015

Aktivitas erupsi Gunung Sinabung di Kab. Karo, Sumatera Utara tetap tinggi. Sepanjang Selasa (17/6/2015) terjadi 120 kali guguran, 4 kali luncuran awan panas sepanjang 2-3 km ke sisi timur-tenggara dan selatan, 2 kali luncuran lava pijar 1,5 km ke tenggara dan 2 km ke selatan, tremor menerus serta semua parameter seismisitas masih tinggi. Pada Rabu (18/6/2015) siang telah terjadi 1 kali awan panas guguran dari puncak dengan jarak luncur sejauh 2,5 km ke Tenggara, dan guguran lava pijar dari puncak sejauh 700-1.500 meter ke Tenggara, tremor menerus. Potensi erupsi susulan masih tinggi. Status Awas (level IV).

Adanya perluasan radius yang harus dikosongkan menyebabkan warga beberapa desa harus dievakuasi. Saat ini pengungsi 10.377 jiwa (2.762 KK) yang tersebar di 10 pos pengungsian. Pengungsi berasal dari Desa Guru Kinayan, Tiga Pancur, Pintu Besi, Sukanalu, Beras Tepu, Sigarang-garang, Jeraya, Kuta Rayat, Kuta Gunggung, Mardinding, Kuta Tengah, dan Dusun Lau Kawar. Pengungsi bukan hanya berasal dari desa sisi tenggara-selatan dari puncak kawah, tetapi desa-desa di sisi utara, timur dan barat daya pun mengungsi. Di beberapa pos penampungan terdapat pengungsi yang banyak, seperti di pos pengungsian BPPT, jambur Tongkoh dan Tahura ada 2.728 jiwa (666 KK).

Untuk selanjutnya, Erupsi Sinabung masih terus berlanjut, dan letusan tanggal 17/6 merupakan kumpulan tulisan ini disampaikan.

Kepulan debu vulkanik pekat menyembur dari puncak Gunung Sinabung yang tingginya 2.460 meter dari paras air laut pada Minggu pagi 15 September 2013. Debu membumbung ke atas hingga setinggi sekitar 50 meter dari puncak untuk kemudian ‘hanyut’ ke timur mengikuti arus udara setempat. Semburan disusul dengan suara bergemuruh disertai hujan debu dan kerikil di kaki gunung. Tak ada keraguan kalau gunung berapi yang terletak di Kabupaten Karo propinsi Sumatra Utara itu telah meletus (kembali).

Letusan terjadi hanya berselang beberapa saat setelah Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) Badan Geologi Kementerian ESDM menaikkan status Gunung Sinabung dari Waspada (Tingkat 2) menjadi Siaga (Tingkat 3). Peningkatan dilakukan seiring meningkatnya aktivitas kegempaan vulkanik di gunung berapi ini khususnya dengan mulai terjadinya gempa tremor menerus yang dibarengi penampakan titik api di puncak.

Gambar 1. Hembusan kolom debu vulkanik Gunung Sinabung pada letusan 2013 yang dimuntahkan dari Kawah III, diabadikan pada Minggu 15 September 2013 dari kaki gunung sektor tenggara. Nampak posisi sumbat lava (SL) di puncak. Sumber: Antara, 2013.

Meski sampai saat ini terhitung lebih kecil jika dibandingkan Letusan Sinabung 2010, Badan Nasional Penanggulangan Bencana (BNPB) melalui Badan Penanggulangan Bencana Daerah (BPBD) Sumatra Utara tak mau membuang waktu. Evakuasi penduduk di desa-desa di kawasan kaki gunung segera digelar. Hingga Senin pagi 16 September 2013 pukul 08:00 WIB jumlah pengungsi tercatat 5.956 jiwa yang tersebar di lima titik pengungsian. Sejauh ini tak ada korban jiwa atau luka-luka dan kerusakan bangunan akibat letusan Sinabung. Namun penerbangan perintis Susi Air yang melayani rute Kuala Namu-Kutacane hari ini terpaksa dibatalkan untuk menghindari kemungkinan gangguan pada pesawat akibat menghirup debu vulkanik. Dengan status Siaga (Tingkat 3), maka tak ada aktivitas manusia yang diperbolehkan hingga radius 3 kilometer dari puncak.

Letusan Sinabung kali ini merupakan yang kedua dalam tiga tahun terakhir setelah diselingi periode tenang antara 7 Oktober 2010 hingga 14 September 2013. Sebelumnya Gunung Sinabung, yang tak dipantau secara rutin karena kedudukannya sebagai gunung berapi aktif tipe B (yakni gunung berapi yang pernah meletus sebelum tahun 1600 namun tak diketahui kapan waktu kejadiannya dengan pasti), mendadak menyemburkan debu vulkanik pekatnya hingga setinggi sekitar 3.000 meter disertai suara dentuman keras pada Jumat senja 27 Agustus 2010. Tak ada tanda-tanda yang dirasakan sebelum letusan terjadi.

Letusan ini sontak mengagetkan segenap penduduk di sekujur kaki gunung, karena kejadian tersebut tak pernah mereka alami sepanjang hayatnya, bahkan bagi generasi kakek-nenek mereka sekalipun. Sehingga tak satupun yang tahu apa yang harus dilakukan. Alhasil mereka pun melewatkan malam dengan penuh rasa cemas di kediaman masing-masing di tengah guyuran hujan debu dari langit. Baru keesokan paginya pengungsian dilakukan dan ribuan orang pun dievakuasi menuju 8 titik pengungsian yang secara keseluruhan menampung sekitar 12.000 orang.

PVMBG pun segera mengirim tim reaksi cepat untuk memantau gunung ini. Status Awas (Tingkat 4) pun diberlakukan dengan konsekuensi hingga radius 6 kilometer dari puncak gunung menjadi area yang terlarang untuk aktivitas manusia dalam bentuk apapun. Letusan berlanjut hingga mencapai puncaknya pada 7 September 2010 saat letusan eksplosif (ledakan) terjadi. Namun selepas itu aktivitas Sinabung berangsur-angsur menurun, sehingga status Awas pun diturunkan menjadi Siaga pada 23 September 2010 dan akhirnya diturunkan kembali Waspada semenjak 7 Oktober 2010 yang terus bertahan hingga tiga tahun kemudian.

Sinabung dan Toba


Gambar 2. Kontur Gunung Sinabung dengan posisi setiap kawah (I, II, III dan IV) serta bekas tambang Belerang di lerengnya (S). Di kaki gunung sektor utara terdapat Danau Lau Kawar. Sumber: Sudibyo, 2013 adaptasi dari Wittiri, 2009 dengan peta dari Google Maps.

Bagi Indonesia, letusan Sinabung pun cukup mengagetkan. Tak ada catatan letusan bagi gunung berapi ini dalam kurun 400 tahun terakhir, sehingga kadangkala ia bahkan dianggap sudah mati alias tak bisa meletus lagi. Dari endapan awan panas purba yang terserak di sekitar kampung Bekerah (kaki gunung sektor tenggara) diketahui muntahan magma Sinabung yang terakhir terjadi 1.200 tahun silam . Sebelum 27 Agustus 2010, aktivitas vulkanik gunung ini hanya berupa kepulan uap air dan gas belerang melalui titik-titik fumarol dan solfatara yang tersebar di keempat kawahnya.

Sinabung memang memiliki empat kawah, masing-masing diberi nama Kawah I, II, III dan IV. Kawah I terletak di puncak sebuah kubah lava tua dan sekaligus menjadi titik tertinggi Sinabung (2.460 meter dpl). Kawah II (2.437 meter dpl) terletak di timur Kawah I. Sementara Kawah III (2.431 meter dpl) berada di sebelah selatan Kawah II atau di sebelah tenggara Kawah I dan menjadi satu-satunya kawah Sinabung yang memiliki nama, yakni Kawah Batu Sigala. Antara Kawah II dan III terdapat sebuah sumbat lava berukuran besar yang khas dengan bentuk mirip ujung jarum jika dilihat dari kejauhan. Keberadaan sumbat lava ini memunculkan dugaan bahwa Kawah II dan III merupakan sepasang kawah kembar. Dan Kawah IV (2.453 meter dpl) terselip di antara Kawah I dan III.

Pada setiap kawah dijumpai endapan Belerang yang berwarna kekuningan dan berjumlah cukup besar sebagai produk aktivitas solfatara. Endapan Belerang juga dijumpai di lereng selatan, dalam sebuah lembah besar tempat asap Belerang sanggup menembus tubuh gunung dan mengepul. Banyaknya jumlah Belerang membuatnya sempat ditambang oleh penduduk setempat, khususnya deposit di lereng selatan yang relatif lebih mudah diakses. Namun aktivitas penambangan ini berhenti dalam satu dasawarsa silam, seiring kian menurunnya kadar Belerang yang berhasil digali dan saat itu diduga akibat kian menurunnya kegiatan vulkanik Sinabung. Sehingga Belerang yang masih ada dan terus terbentuk dianggap tak lagi menguntungkan untuk dieksploitasi.

Gunung Sinabung merupakan satu gunung berapi penghias sebentuk dataran tinggi yang membentang dari sisi timur lembah Wampu hingga Berastagi. Dataran tinggi ini memiliki puncak-puncak yang menjulang di atas ketinggian 1.500 meter dpl. Namun puncak Sinabung-lah yang tertinggi di sini, melampaui ketinggian puncak gunung berapi lainnya didekatnya yakni Gunung Sibayak yang ‘hanya’ 2.212 meter dpl. Secara geologis gunung berapi ini terbentuk melalui proses yang serupa dengan pembentuk gunung-gunung berapi lainnya di sekujur pulau Sumatra, termasuk Danau Toba (Gunung Toba) yang terkenal itu.

Yakni dari interaksi lempeng India dan Australia yang mendesak ke utara terhadap lempeng Sunda (Eurasia) dan mikrolempeng Burma yang mengalasi pulau Sumatra dan bergerak lebih lambat ke timur. Sebagai lempeng samudera yang massa jenisnya lebih berat, lempeng India dan Australia melekuk (menyubduksi) ke bawah lempeng Sunda dan Burma yang sifatnya kontinental. Selain membentuk palung laut memanjang yang menghiasi lepas pantai barat Sumatera, subduksi yang bersifat miring ini juga menjadi penyebab terbentuknya Pegunungan Bukit Barisan yang adalah kenampakan di muka Bumi dari sistem patahan besar Sumatra, sumber gempa darat utama di pulau itu.




Gambar 3. Sepasang kolom debu vulkanik dan uap air yang menjulur dari puncak Gunung Sinabung yang ikonik dalam letusan 2010 silam. Masing-masing kolom debu dimuntahkan dari Kawah II dan III, sementara kolom uap air dari Kawah IV. I menunjukkan posisi Kawah I yang tidak memuntahkan material letusan sama sekali, sementara SL adalah lokasi sumbat lava. Sumber: Badan Geologi, 2010.

Selain membentuk sumber-sumber gempa, pergesekan antar lempeng-lempeng tersebut juga memproduksi magma di kedalaman yang lantas mengumpul dalam dapur-dapur magma. Melalui jalur-jalur lemah dalam lempeng Eurasia, magma pun mengalir ke atas dan akhirnya keluar di muka Bumi membentuk gunung-gunung berapi Sumatra. Namun meski terbentuk oleh mekanisme yang sama, tiap dapur magma memiliki volume dan ciri khasnya sendiri-sendiri sehingga masing-masing gunung berapinya pun memiliki karakternya sendiri-sendiri. Karena itu meski Gunung Sinabung berdiri berdampingan dengan Danau Toba (Gunung Toba), karakteristik magma Sinabung menjadikannya relatif kalem dan tak seganas Gunung Toba.

Dengan karakteristik Sumatra sedemikian rupa, nampaknya ada sebuah hubungan antara aktivitas kegempaan tektonik yang dibangkitkan sistem patahan besar Sumatra dengan aktivitas gunung-gunung berapinya terkait pelepasan energi akibat subduksi lempeng India dan Australia terhadap lempeng Sunda dan mikrolempeng Burma.

Saat intensitas gempa-gempa tektonik Sumatra demikian riuh seperti saat ini, maka aktivitas gunung-gunung berapinya tergolong rendah. Dalam seabad terakhir pulau Sumatra hanya mengalami tiga letusan gunung berapi, masing-masing Letusan Peuet Sago 1988 (Aceh), Letusan Talang 2005 (Sumatra Barat) dan Letusan Sinabung 2010 (Sumatra Utara).

Namun saat intensitas gempa-gempa tektonik cukup rendah, seperti pernah terjadi di masa silam, maka giliran aktivitas kegunungapiannya yang cukup tinggi. Letusan Toba 75.000 tahun silam, yang adalah letusan terdahsyat di muka Bumi dalam kurun 26 juta tahun terakhir, menjadi contohnya bersama dengan Letusan Maninjau 60.000 tahun silam.


Gunung Tidur

Gambar 4. Saat-saat awal kelahiran Gunung Anak Ranakah di dekat kota Ruteng (NTT) pada akhir Desember 1987. Nampak kolom debu vulkanik menyembur ke arah timur. Tanda panah menunjukkan lokasi bukit Ranakah dengan menara telekomunikasi Perumtel (kini PT Telkom) di puncaknya. Sumber: Rohi, 1988 dalam Wahyudin, 2012.

Letusan Sinabung 2010 tergolong erupsi freatik, yakni letusan gunung berapi yang terjadi saat magma yang sedang menanjak naik menuju tubuh gunung mulai memanaskan air bawah tanah. Air pun berubah menjadi uap dan terjebak di bawah sana sembari terkumpul sedikit demi sedikit, sehingga pada akhirnya berjumlah sangat banyak dan memiliki tekanan sangat besar hingga melampaui dayatahan batuan penyumbat saluran magma Gunung Sinabung.

Maka menyemburlah uap air keluar melalui titik terlemah yang umumnya adalah dasar kawah sebuah gunung berapi. Sembari menyembur keluar, uap air juga menyeret kerikil, pasir dan debu bersamanya. Sehingga letusan ini tidak disertai muntahan magma dalam segala rupanya, baik sebagai leleran lava melalui lereng-lerengnya ataupun tumpukan magma segar di puncak sebagai kubah lava baru yang lantas longsor menjadi awan panas. Bukti terjadinya erupsi freatik diperoleh dari endapan batu dan pasir produk letusan, yang absen dari tanda-tanda kehadiran magma segar.

Meski sanggup memproduksi erupsi freatik, tekanan uap masih jauh dari cukup untuk mampu mendobrak kubah lava tua yang ada di puncak Sinabung. Sebagai akibatnya arus uap pun tidak menyembur lewat Kawah I di puncak, melainkan terpaksa berbelok ke samping sehingga keluar dari Kawah II dan III secara bersamaan. Inilah yang menimbulkan kepulan debu vulkanik kembar dan menjadi ikon Letusan Sinabung 2010.

Letusan-letusan Sinabung periode berikutnya diperkirakan akan terjadi lewat jalur yang sama. Terbukti dalam Letusan Sinabung 2013 ini, debu vulkanik pun menyembur terutama melalui Kawah III. Tiadanya jejak-jejak magma terutama berupa luncuran lava hingga saat ini menunjukkan Letusan Sinabung 2013 pun masih berupa erupsi freatik.

Bagaimana Gunung Sinabung bisa meletus kembali setelah 1.200 tahun terlewat? Bagi sebagian besar kita, fakta ini memang mencengangkan. Indonesia amat akrab dengan sejumlah gunung berapi yang demikian rajin meletus dalam waktu-waktu tertentu. Sebut saja Gunung Anak Krakatau (Lampung) di Selat Sunda, yang hampir setiap tahun selalu menyemburkan debu dan magma. Atau Gunung Merapi (Jawa Tengah-DIY) yang meletus setiap antara 2 hingga 5 tahun sekali.

Demikian pula Gunung Lokon-Empun dan Karangetang (keduanya di Sulawesi Utara). Maka bagaimana sebuah gunung berapi bisa terdiam selama 1.200 tahun untuk kemudian meletus kembali sepintas cukup mengejutkan. Namun dalam khasanah kegunungapian, hal ini sebenarnya tidaklah unik baik dalam lingkup Indonesia maupun global. Dalam seperempat abad terakhir Indonesia telah menyaksikan tiga buah gunung berapi yang bangun kembali dari tidur panjangnya.

Gambar 5. Magma segar yang mulai menumpuk membentuk kubah lava baru di dasar kawah Gunung Ibu yang telah menjadi hutan belantara pada Januari 1999, sebagai pertanda bangunnya gunung berapi ini dari tidur panjangnya selama 15.000 tahun. Sumber; Wittiri, 2009.

Selain Gunung Sinabung, dua lainnya adalah Gunung Anak Ranakah (NTT) dan Gunung Ibu (Maluku Utara). Gunung Anak Ranakah tumbuh dari tepian kaldera Poco Leok yang tua. Kemunculannya pada akhir 1987 menggemparkan Indonesia dan dunia, sebab inilah untuk pertama kalinya manusia modern menyaksikan langsung detik-detik kelahiran sebuah gunung berapi dalam setengah abad terakhir, setelah peristiwa kelahiran Gunung Paricutin (Meksiko) pada 1943.

Pada 28 Desember 1987 sebuah ledakan dan kepulan debu vulkanik mendadak terjadi di kaki bukit Ranakah sektor timur laut tak jauh dari kota Ruteng. Titik ledakan terus memuntahkan magma hingga berbulan-bulan kemudian hingga membentuk gundukan yang terus membumbung tinggi hingga seukuran bukit (kubah lava) yang kemudian diberi nama Gunung Anak Ranakah.

Demikian pula Gunung Ibu di pulau Halmahera bagian utara, yang juga tak menunjukkan aktivitas muntahan magma dalam kurun cukup lama. Sehingga sekujur tubuh gunung hingga ke puncak, bahkan hingga ke dalam kawahnya yang berdiameter 1 kilometer itu dipenuhi dengan tetumbuhan lebat. Siapa sangka gunung berapi ini mendadak meletus pada Desember 1998 yang berujung dengan terbentuknya kubah lava baru di dasar kawah semenjak 20 Januari 1999.

Berbeda dengan Gunung Sinabung yang ‘hanya’ terdiam selama 1.200 tahun, kawasan di kompleks kaldera Poco Leok maupun Gunung Ibu tak menunjukkan jejak aktivitas vulkanik muntahan magma dalam kurun 15.000 tahun terakhir. Ini jauh melampaui batasan standar dunung berapi aktif terketat yang dilansir Global Volcanism Program Smithsonian, yakni maksimum 10.000 tahun terakhir. Dengan demikian baik kaldera Poco Leok maupun Gunung Ibu bisa dikatakan sebagai gunung berapi tak aktif sebelum masing-masing terbangun kembali.

Satu hal yang mengkhawatirkan dari gunung-gunung berapi yang meletus kembali setelah sekian lama adalah potensi terjadinya letusan dahsyat yang katastrofik, atau bahkan kolosal. Pada dasarnya kian lama sebuah gunung berapi terdiam, kian banyak gas-gas vulkanik yang tersekap di dalam dapur dan kantung magmanya sehingga kian besar energinya. Maka tatkala meletus, terjadilah pelepasan energi dalam jumlah besar yang sanggup menghancurkan puncak gunung atau bahkan hampir keseluruhan tubuh gunung hingga membentuk kawah raksasa (kaldera) dengan dampak letusan bersifat regional. Meletus dahsyatnya Gunung Pinatubo (Filipina) pada 1991 menjadi contoh terkini, dimana gunung berapi tersebut terbangun kembali setelah lebih dari 600 tahun.

Kabar baiknya, tak setiap gunung berapi yang lama tertidur kemudian meletus dahsyat tatkala terbangun. Gunung Sinabung menjadi salah satu contohnya. Meski harus digarisbawahi bahwa bagaimana karakter letusan gunung berapi ini ke depan masih menjadi tanda tanya seiring belum terjadinya erupsi magmatik (letusan yang memuntahkan magma).



GUNUNG SINABUNG DAN DANAU TOBA

Sebuah penelitian yang telah berlangsung selama enam tahun terakhir telah mengungkap hal mencengangkan di perutbumi Danau Toba (propinsi Sumatra Utara). Menggunakan 40 seismometer (radas/instrumen perekam gempa) yang dipasang di sekeliling Danau Toba selama kurun Mei hingga Oktober 2008 Tarikh Umum (TU yang dianalisis hingga bertahun kemudian, tim peneliti gabungan Russia, Perancis dan Jerman mengungkap bahwa di perutbumi Danau Toba ini masih tersimpan magma. Bubur batu yang panas membara dalam jumlah relatif besar itu dijumpai berada di kedalaman lebih dari 7 kilometer dari paras air laut rata-rata (dpl).

Gambar 6. Pemandangan sisi selatan Danau Toba yang permai. Nampak pulau Pardepur yang seakan mengapung di air danau. Pulau ini sejatinya merupakan salah satu kubah lava yang menyembul di paras danau, dari sejumlah kubah lava di sini yang terbentuk pasca letusan sangat dahsyat dalam kurun 74.000 tahun silam. Sumber: Sutawidjaja, 2008 dalam Warta Geologi, 2008.

Magma di bawah danau itu dijumpai secara tak langsung lewat analisis gelombang gempa-gempa tektonik kecil yang rutin terjadi di kawasan ini seiring eksistensi patahan besar Sumatra dan cabang-cabangnya. Tim peneliti memusatkan perhatian pada gelombang permukaan, yakni gelombang Rayleigh dan gelombang Love, dengan melacak perbedaan kecepatannya. Mereka menemukan gelombang Rayleigh yang melintas di bawah Danau Toba (periode 5 dan 15 detik) memiliki kecepatan lebih rendah dibanding yang melewati area lain disekitarnya. Hal sejenis juga dijumpai pada gelombang Love namun hanya pada periode kecil (5 detik) dan pada kedalaman lebih rendah. Guna menafsirkan perbedaan antara perilaku gelombang Rayleigh dan Love di bawah Danau Toba, tim peneliti memutuskan untuk ‘melihat’ melalui gelombang sekunder terpolarisasi baik secara horizontal (SH) maupun vertikal (SV). Mereka juga kembali menjumpai keanehan lagi, gelombang sekunder SV pada kedalaman antara 7 hingga 20 kilometer dpl di bawah Danau Toba memiliki kecepatan lebih rendah. Sebaliknya gelombang sekunder SH berkecepatan lebih rendah hanya pada kedalaman lebih dangkal dari 7 kilometer dpl.

Pada dasarnya gelombang gempa akan melaju lebih cepat jika melintasi media yang padat (batuan) ketimbang media yang cair/setengah cair (magma). Dengan demikian dapat dikatakan bahwa pada kerak bumi di bawah Danau Toba terdapat magma, yang tersekap dalam kantung magma. Namun tak puas jika hanya menyimpulkan seperti itu. Mereka mencoba melangkah lebih jauh untuk mengetahui strukturnya. Setelah melakukan serangkaian perhitungan dan pemodelan matematis yang rumit dan meninjau juga hasil-hasil penelitian sebelumnya, mereka berani menyimpulkan bahwa magma di bawah Danau Toba tersimpan dalam sejumlah lapisan mendatar (sill) yang bertumpuk mirip kue lapis, tertata pada kedalaman antara 7 hingga 20 kilometer dpl. Pada kedalaman lebih besar dari 20 kilometer dpl pun diduga masih seperti itu yang menerus hingga kedalaman sekitar 30 kilometer dpl, tempat kerak bumi setempat berbatasan dengan selubung atas. Sebaliknya pada kedalaman yang lebih dangkal dari 7 kilometer dpl magmanya tidak tertata seperti itu, melainkan menyelusup di sela-sela kerak bumi dengan geometri yang kacau-balau. Tim menyimpulkan kawasan kacau-balau ini adalah pertanda jelas dari masa silam, dari sebuah letusan gunung berapi yang sangat dahsyat.


Gambar 7. Penampang melintang kerak bumi di bawah Danau Toba dalam dua dimensi, dengan perkiraan kantung magma raksasanya berdasarkan penelitian gabungan Rusia, Perancis dan Jerman.

Terdapat lapisan-lapisan mendatar berisi magma (sill) mulai dari kedalaman 7 hingga 20 kilometer dpl dan kemungkinan menerus hingga 30 kilometer dpl. Pada kedalaman lebih dangkal dari 7 kilometer dpl terdapat zona kacau-balau, yakni bagian kerak bumi di bawah Danau Toba yang terimbas langsung letusan sangat dahsyat 74.000 tahun silam. Sumber: Jaxybulatov dkk, 2014.


Apa pentingnya penelitian ini? Tak lain dan tak bukan ia menegaskan bahwa Danau Toba sejatinya adalah sebuah gunung berapi. Dan dengan struktur kantung magmanya yang demikian, ia bukanlah gunung berapi biasa. Ya. Danau Toba adalah sebuah gunung berapi super (supervolcano), yang aksinya di masa silam sanggup membuat bulu kuduk kita meremang.

Letusan Toba Muda

Danau Toba. Rasanya tak ada manusia Indonesia, terlebih yang pernah mengenyam bangku sekolah, yang tak pernah mendengar namanya. Inilah perairan tawar terbesar se-Indonesia bahkan seantero Asia Tenggara. Danau ini memiliki luas 1.130 kilometer persegi yang menampung air hingga sebanyak 240 kilometer kubik, bersumber dari aneka mata air disekelilingnya seiring curah hujan tahunan lebih dari 2.100 mm/tahun (rata-rata). Paras air danau terletak di ketinggian 906 meter dpl dengan kedalaman maksimum 530 meter dari paras. Ini menjadikannya sebagai danau terdalam ke-2 di Indonesia (setelah Danau Matano di Sulawesi) dan juga danau terdalam keempatbelas di seantero Bumi.

Perairan luas ini dipagari oleh tebing-tebing curam yang ketinggiannya bervariasi antara 400 hingga 1.200 meter dari paras danau, dengan puncak tertinggi menyembul 1.700 meter di atas paras danau. Air danau ini mengalir di sudut tenggara sebagai Sungai Asahan dengan debit rata-rata 155 meter kubik/detik. Besarnya debit air dimanfaatkan untuk membangkitkan listrik lewat dibangunnya waduk Sigura–gura (tinggi bendungan 47 meter) dan waduk Tangga (tinggi bendungan 82 meter) dengan total produksi 426 megawatt listrik.



Gambar 8. Topografi Danau Toba dan lingkungan sekelilingnya beserta kedalaman perairannya. Tersaji pula lubang-lubang letusan yang dibentuk oleh keempat letusan sangat dahsyat Gunung Toba di masa silam. Sumber: Chesner, 2011 dengan labelisasi oleh Sudibyo, 2014.

Di tengah-tengah danau terdapat Pulau Samosir (panjang 45 kilometer, lebar 20 kilometer), yang sejatinya bukan pulau. Dahulu Samosir tersambung langsung dengan daratan Sumatra lewat jembatan alamiah (tanah genting) di sisi barat. Namun romantisme era Hindia Belanda membuat tanah genting ini dikeruk demikian rupa sehingga Samosir pun akhirnya benar-benar terpisah dan menjadi pulau yang berdiri sendiri.

Di pulau terdapat dua danau kecil yakni Danau Sidihoni dan Danau Aek Natonang, membuatnya kerap disebut sebagai danau di atas danau. Selain keunikan ini, pemandangan indah di sekujur Danau Toba juga disokong oleh sejumlah air terjun seperti air terjun Sipiso-piso maupun air terjun Sigura-gura. Sigura-gura adalah air terjun setinggi 250 meter, menjadikannya air terjun tertinggi se-Indonesia. Panorama yang indah dan udara yang sejuk menjadikan danau raksasa yang juga jantung masyarakat Batak ini menjadi tujuan wisata yang populer.

Di balik keindahannya, ada misteri yang tersembunyi di danau ini semenjak awal peradaban umat manusia. Misteri yang menggetarkan itu baru terkuak kurang dari seabad silam. Ternyata danau raksasa ini adalah sebuah gunung berapi. Adalah RW van Bemmelen, geolog legendaris era Hindia Belanda, yang mengungkapnya pada masa antara 1930 hingga 1939 TU.

Geolog yang sangat populer dengan opus magnumnya The Geology of Indonesia, buku yang wajib dibaca dalam pembelajaran geologi Indonesia, awalnya curiga dengan kehadiran ignimbrit yang tersebar pada area luas di Sumatra bagian utara. Ignimbrit adalah campuran antara debu vulkanik yang mengeras (tuff) dengan butir-butir batuapung yang bersifat asam (kaya silikat) demikian rupa hingga membatu. Ignimbrit hanya bisa hadir kala terjadi letusan gunung berapi yang eksplosif dan berskala besar sehingga menghempaskan awan panas dalam jumlah besar.

Kian mendekat ke Danau Toba, ignimbrit yang dijumpai kian menebal saja. Bahkan dijumpai pula tuff yang terlaskan (welded tuff) yang berlimpah, lagi-lagi petunjuk terjadinya letusan berskala besar di masa silam.


Gambar 9. Singkapan ignimbrit tepat di tepi jalan di pinggiran Danau Toba. Ignimbrit ini kaya akan besi dan telah teroksidasi sehingga berwarna kemerah-merahan mirip karat. Ignimbrit inilah jejak dari letusan gunung berapi yang dahsyat di masa silam, yang menghasilkan kaldera raksasa dan kini digenangi air menjadi Danau Toba. Diabadikan oleh Ridwan Hutagalung dalam rangka Geotrek Danau Toba 2-4 November 2012 TU. Sumber: Hutagalung, 2012.

Ignimbrit yang tebal di sekitar Danau Toba namun menipis begitu jaraknya lebih jauh mengesankan bahwa batuan vulkanik itu bersumber dari tempat yang kini menjadi Danau Toba. Jelas sudah. Danau Toba adalah perairan tawar raksasa yang menempati sebuah cekungan sangat besar produk letusan gunung berapi yang sangat dahsyat. Dengan luas cekungan 2.270 kilometer persegi (panjang sekitar 100 kilometer dan lebar sekitar 30 kilometer), maka jelaslah bahwa ia berkualifikasi kaldera.

Danau Toba merupakan perairan tawar yang menempati kaldera tersebut meski genangannya tak sampai mencakup separuh luas kaldera. Sehingga Danau Toba adalah danau vulkanik. Ukuran Kaldera Toba yang demikian raksasa membuat kaldera-kaldera produk letusan dahsyat gunung berapi dalam era sejarah di Indonesia seperti kaldera Rinjani, Tambora dan Krakatau menjadi terasa kerdil. Andaikata kaldera raksasa Toba ditempatkan di pulau Jawa bagian tengah, maka ia akan membentang mulai dari Gunung Slamet di barat hingga Gunung Sumbing-Sindoro di timur.


Gambar 10. Bagaimana jika kaldera raksasa Toba dengan Danau Toba di tengah-tengahnya ditempatkan di pulau Jawa bagian tengah dan disejajarkan dengan orientasi pulau. Nampak jelas kaldera raksasa itu membentang dari Gunung Slamet di barat hingga Gunung Sumbing di timur. Sumber: Sudibyo, 2014 berbasis Google Maps.

Van Bemmelen pula yang memopulerkan istilah Tumor Batak, yakni gundukan sangat besar tempat dimana Danau Toba berada yang terpisah dari Pegunungan Bukit Barisan. Dengan Danau Toba sebagai perairan di dalam kaldera, maka Tumor Batak yang menopangnya pada hakikatnya adalah gunung berapi yang disebut Gunung Toba.

Gunung Toba menjadi salah satu gunung berapi yang berdekatan/berdiri di atas sistem patahan besar Sumatra. Patahan besar ini, yang secara kasat mata nampak sebagai Pegunungan Bukit Barisan, terbentuk seiring tunjaman miring lempeng India dan Australia yang oseanik terhadap lempeng Sunda yang kontinental dan menjadi alas berdirinya pulau Sumatra. Patahan ini sekaligus adalah zona lemah di kerak bumi Sumatra yang memudahkan magma produk pelelehan sebagian di bidang kontak tunjaman merangsek ke atas.

Di kemudian hari kita kian mengetahui bagaimana lasaknya Gunung Toba ini yang menjadikannya sebagai gunung berapi super. Dalam kurun 1,2 juta tahun terakhir telah terjadi empat letusan dahsyat. Letusan terakhir sekaligus yang paling dahsyat sepanjang sejarahnya adalah Letusan Toba Muda, yang terjadi 74.000 tahun silam. Letusan Toba Muda juga adalah letusan terdahsyat yang pernah terjadi di Bumi dalam kurun 27,8 juta tahun terakhir.

Ia memuntahkan tak kurang dari 2.800 kilometer kubik material vulkanik, lewat letusan dahsyat sedahsyat-dahsyatnya yang berlangsung selama sekitar dua minggu berturut–turut tanpa hentu. Dapat dikatakan setiap detiknya Gunung Toba menyemburkan tak kurang dari 4,6 juta meter kubik material vulkanik. Jika suhu magmanya saat tepat keluar dari lubang letusan berkisar 700 hingga 780 derajat Celcius, maka energi termal yang dilepaskannya mencapai 500 ribu megaton TNT. Ini setara dengan 21 juta butir bom nuklir Hiroshima diledakkan secara bersama-sama di satu titik.



Andaikata seluruh material vulkanik ini dituang demikian rupa mengubur wilayah DKI Jakarta, propinsi yang juga ibukota Indonesia itu akan terbenam di bawah timbunan batu, pasir dan debu vulkanik setebal 4,2 kilometer. Letusan yang sedemikian dahsyat dengan muntahan material vulkanik sedemikian besar membuat sejumlah letusan dahsyat gunung berapi Indonesia di era sejarah seperti Letusan Tambora 1815 maupun Letusan Krakatau 1883 menjadi terasa kerdil. Bahkan Letusan Kelud 2014 yang terasa demikian menghentak di tahun 2014 TU ini ibarat semut disandingkan dengan gajah bila dibandingkan dengan kedahsyatan Gunung Toba saat itu.

Dari 2.800 kilometer kubik material vulkanik yang diletuskannya, 1.000 kilometer kubik diantaranya meluncur deras sebagai awan panas yang mengalir ke barat dan timur. Awan panas Toba membanjiri kawasan sangat luas yang membentang dari pantai Selat Malaka di timur hingga pesisir Samudera Hindia di barat. Meski sudah menjalar jauh dari kaldera, suhunya masih tinggi, mungkin hingga 500 derajat Celcius. Akibatnya daratan Sumatra bagian utara pun diubah menjadi segersang Bulan.

Segala kehidupan yang ada tersapu pun terpanggang dan musnah. Endapan awan panas gigantis inilah yang kini tersingkap sebagai ignimbrit di area seluas 20.000 kilometer persegi. Ketebalan rata-ratanya 50 meter, namun sesungguhnya bervariasi tergantung jauh dekatnya dengan Gunung Toba. Di tepi Danau Toba, ketebalan ignimbritnya mencapai 400 meter. Awan panas yang mengalir jauh tersebut dipastikan juga ada yang terjun ke Selat Malaka dan Samudera Hindia, memicu tsunami di kedua perairan itu. Namun seberapa besar tsunaminya belum diketahui, seiring volume awan panas yang masuk ke dalam kedua perairan tersebut pun belum diketahui.


Letusan Toba Muda yang dahsyat itu membentuk kaldera raksasa dengan kedalaman sekitar 2 kilometer dpl akibat kosongnya kantung magma raksasa Toba, sehingga tak sanggup lagi menahan bobot tubuh gunung. Namun kaldera sedalam ini segera ditimbuni kembali oleh 1.000 kilometer kubik material vulkanik lainnya, yang terlalu berat baik untuk mengalir jauh maupun membumbung tinggi ke udara. Di dasar kaldera ini ketebalan ignimbritnya diperkirakan mencapai 600 meter.

Dan 800 kilometer kubik material vulkanik sisanya berupa debu vulkanik halus yang terlontar sangat tinggi ke udara hingga menembus ketinggian 70 kilometer dpl. Sebagian debu vulkanik tersebut lantas tertiup angin ke barat dan berjatuhan menyelimuti area seluas lebih dari 4 juta kilometer persegi. Kawasan tersebut meliputi India, Semenanjung Malaya, Teluk Benggala, Samudera Hindia bagian utara, Laut Arab dan Semenanjung Arabia.

Ketebalan endapan debu vulkanik di sini mencapai 10 cm (rata-rata), atau setara dengan 400 kilometer kubik material. Sisanya terbawa oleh sirkulasi angin di dalam lapisan stratosfer hingga tersebar ke segenap penjuru. Tanpa bisa dipengaruhi oleh proses-proses cuaca, debu vulkanik ini bertahan hingga bertahun-tahun di dalam lapisan stratosfer sebelum jatuh kembali ke permukaan Bumi di bawah pengaruh gravitasi. Sepanjang waktu itu ia menimbulkan efek lanjutan yang mencekik kehidupan di permukaan Bumi hingga ke titik yang paling kritis.

Musim Dingin Vulkanik

Masalah terbesar akibat Letusan Toba Muda terletak pada tebaran debu vulkaniknya ke dalam lapisan stratosfer. Umumnya 10 hingga 30 % dari material vulkanik yang disemburkan gunung berapi dalam sebuah letusan dahsyat, terlebih jika tinggi kolom semburannya melebihi 30 kilometer dpl, akan tetap bertahan di udara karena sudah terlanjur masuk jauh ke dalam lapisan stratosfer, khususnya jika berupa debu halus. Di saat yang sama, belerang yang turut terbawa sebagai gas sulfurdioksida akan bereaksi dengan butir–butir air di udara hingga membentuk tetes–tetes asam sullfat dalam rupa aerosol. Apa yang selanjutnya terjadi baru bisa kita pahami setelah dunia memasuki era nuklir lebih dari setengah abad silam.

Di tengah kancah perang urat-syaraf yang dikenal sebagai Perang Dingin, dua negara adidaya yang terlibat yakni Amerika Serikat dan Uni Soviet berlomba–lomba memproduksi senjata nuklir dalam beragam ukuran dan kekuatan. Untuk menyimulasikan dampaknya dalam berbagai kondisi, rangkaian eksperimen peledakan nuklir pun diselenggarakan. Selama masa ujicoba nuklir yang riuh itu diketahui bila senjata nuklir diledakkan di permukaan tanah ataupun bawah tanah dangkal, ledakannya akan menghembuskan material ledakan berupa debu dan batu beragam ukuran ke atmosfer.

Ketinggian semburan material ledakan bergantung pada kekuatan ledakan, semakin semakin besar ledakan nuklirnya maka semakin berlimpah material ledakannya dan semakin tinggi pula mereka dihembuskan ke langit bahkan bisa memasuki lapisan stratosfer. Tebaran material ledakan sanggup memblokir cahaya Matahari selama waktu tertentu sehingga permukaan Bumi di sekitar lokasi ledakan berubah menjadi remang–remang atau bahkan gelap gulita. Apalagi jika kekuatan ledakan nuklir itu juga mengenai benda–benda mudah terbakar seperti minyak, kayu, gas, kertas dan batubara sekaligus. Asap hasil pembakaran besar–besaran akan melimpahkan jelaga ke udara yang malah kian memperparah situasi.

Dengan memanfaatkan data–data hasil ujicoba nuklir itu maka pada dekade 1980–an lima serangkai cendekiawan dengan latar belakang keilmuan berbeda mencoba merumuskan model matematika komprehensif dan serangkaian persamaan matematika kompleks yang memprediksikan bagaimana perilaku sebaran debu dan tetes–tetes asam sulfat dalam jumlah besar di lapisan stratosfer.

Model ini disebut model TTAPS, berdasarkan pada huruf depan dari lima cendekiawan penyusunnya masing-masing Turco, Toon, Pollack, Ackerman dan Sagan. Model TTAPS memperlihatkan, karena berada di dalam lapisan stratosfer maka butuh waktu bertahun–tahun bagi debu dan tetes–tetes asam sulfat itu untuk turun kembali ke permukaan Bumi di bawah pengaruh gravitasi Bumi.

Selagi masih melayang di lapisan stratosfer, pada dasarnya debu halus dan tetes–tetes asam sulfat itu menjadi tabir surya, terutama karena asam sulfat sangat efektif dalam menyerap cahaya Matahari. Di samping itu tabir surya juga bisa memantulkan kembali sebagian cahaya Matahari ke langit. Akibatnya albedo Bumi bakal meningkat dan cahaya Matahari yang diteruskan ke permukaan Bumi berkurang.

Akibatnya sungguh pelik mengingat cahaya Matahari membawa energi Matahari yang adalah motor penggerak utama sistem cuaca dan iklim Bumi sekaligus sumber energi utama makhluk hidup. Berkurangnya intensitas pencahayaan Matahari akan menimbulkan anomali suhu permukaan, dimana suhu rata–rata permukaan Bumi bakal merosot dibawah nilai normalnya. Sehingga Bumi akan lebih dingin, fenomena yang disebut sebagai musim dingin nuklir. Es meluas dimana-mana, baik di laut maupun di sungai/danau yang berada di kawasan subtropis. Konsekuensinya tingkat penguapan pun menurun yang bakal berlanjut pada kacau-balaunya sistem cuaca.

Salah satu dampaknya adalah penurunan jumlah hujan. Ada cukup banyak tanaman bahan pangan yang sangat sensitif terhadap perubahan suhu dimana penurunan suhu 1 derajat Celcius saja bisa menyebabkan penurunan produksi atau malah bahkan bisa gagal panen. Ditambah penurunan jumlah hujan, maka eksistensi tabir surya di lapisan stratosfer itu bakal berdampak pada kekurangan bahan pangan yang akan menimbulkan bencana kelaparan massal dengan segala dampak berantainya.

Gambar 11. Ilustrasi saat-saat Gunung Toba meletus dengan dahsyatnya di hari pertamanya pada 74.000 tahun silam, yang menghembuskan debu vulkanik hingga setinggi 70 kilometer dpl sembari menghempaskan awan panas ke segenap Sumatra bagian utara. Arah pandang adalah ke tenggara. Sumber: Anynobody, 2009 dalam Wikipedia, 2009.

Bagaimana jika skenario musim dingin nuklir ala model TTAPS diterapkan pada Letusan Toba Muda?

Letusan Toba Muda menyemburkan tak kurang dari 6 milyar ton gas sulfurdioksida ke atmosfer. Begitu bertemu dengan uap air di udara, gas tersebut berubah menjadi 3 milyar ton aerosol asam sulfat. Koalisi tetes-tetes asam sulfat ini dengan debu vulkanik di dalam lapisan stratosfer membentuk tabir surya vulkanik yang cukup tebal, hingga setebal paling tidak 500 meter.

Tabir surya ini diperhitungkan memblokir cahaya Matahari demikian rupa sehingga jumlah cahaya Matahari yang berhasil diteruskan ke permukaan Bumi kurang dari 1 % terhadap normalnya. Akibatnya di siang hari bolong pun situasi tetap meremang. Matahari akan nampak memerah seperti situasi dalam setengah jam jelang terbenam, meski di tengah hari yang seharusnya terik.

Intensitas pencahayaannya juga anjlok drastis hingga 120 watt per meter persegi di bawah normalnya. Albedo Bumi pun meroket ke posisi 70 % dari normalnya 30 % dan bertahan hingga sedikitnya 10 tahun pasca letusan. Dalam situasi tersebut, model TTAPS memperlihatkan suhu rata-rata permukaan Bumi anjlok hingga bisa mencapai 17 derajat Celcius di bawah normal. Musim dingin pun berkecamuk, yang bisa disebut sebagai musim dingin vulkanik.

Suhu dingin ini memang hanya bertahan selama sekitar 1.000 tahun pasca letusan. Namun kombinasinya dengan siklus Milankovitch dan faktor–faktor tak menguntungkan lainnya menyebabkan Bumi seisinya terseret ke dalam zaman es Wurm utama, meski Bumi baru saja keluar dari zaman es Wurm awal 20.000 tahun sebelumnya. Zaman es Wurm utama berkecamuk selama sekitar 50.000 tahun kemudian dan baru berakhir pada sekitar 20.000 tahun yang lalu.

Kurangnya cahaya Matahari juga menyebabkan tingkat penguapan global terjun bebas hingga 45 % di bawah normal. Konsekuensinya jumlah uap di atmosfer pun anjlok hingga 50 % dibawah normal untuk lapisan troposfer dan hingga 25 % di bawah normal di lapisan stratosfer. Maka curah hujan pun merosot, yang dalam puncaknya sampai merosot drastis hingga 44 cm/tahun di bawah normal. Berkurangnya hujan amat menyengsarakan kawasan–kawasan yang dalam keadaan normal pun curah hujannya sudah kecil. Bahkan hal ini turut mendorong anjloknya paras air laut hingga 40 meter di bawah paras sebelumnya dan bertahan selama 7.000 tahun kemudian.

Musim dingin vulkanik akibat Letusan Toba Muda berimbas sangat buruk bagi kehidupan. Dengan intensitas cahaya Matahari kurang dari 1 % terhadap normalnya, praktis mayoritas tumbuh-tumbuhan berhenti menyelenggarakan fotosintesis. Ditambah dengan suhu yang teramat dingin, mereka pun mati perlahan-lahan.

Bencana segera menjalar melalui rantai makanan. Mayoritas binatang juga kelaparan dan pada akhirnya mati bertumbangan. Anjloknya populasi hewan pun terjadilah, seperti diperlihatkan dalam analisis genetik yang menimpa populasi simpanse Afrika timur, orangutan Kalimantan, kera India, harimau dan cheetah. Manusia, khususnya populasi Homo sapiens arkhaik, turut terkena dampaknya jua. Analisis genetik memperlihatkan sekitar 60 % dari mereka tewas dalam bencana ini dan hanya tersisa sekitar 15.000 populasi saja yang terus berjuang untuk bertahan hidup.


Gambar 12. Bagaimana letusan dahsyat gunung berapi berdampak ke lingkungan sekitar dengan memicu musim dingin vulkanik dalam lingkup regional hingga global. Sumber: Max Planck Institute fur Meteorologie, 2014 dengan labelisasi oleh Sudibyo, 2014.


Masihkah Aktif?

Pasca Letusan Toba Muda, kaldera raksasanya mulai tergenangi air. Dengan curah hujan tahunan masa kini 2.100 mm/tahun dan tingkat penguapan tahunan masa kini 1.350 mm/tahun, butuh waktu sekitar 1.500 tahun saja untuk menggenangi kaldera ini sebagai Danau Toba. Namun jika memperhitungkan air bawah tanah dan aliran permukaan dari kawasan sekitarnya, waktu terbentuknya Danau Toba mungkin saja berlangsung lebih cepat ketimbang 1.500 tahun pasca Letusan Toba Muda.

Di perutbuminya, kantung magma raksasa Toba hingga kedalaman 7 kilometer dpl nyaris kosong setelah isinya nyaris dikuras habis dalam Letusan Toba Muda. Namun secara perlahan-lahan magma segar kembali mengalir ke sini dari dalam lapisan selubung, kemungkinan dari bidang kontak tunjaman antarlempeng tektonik, dan mengisinya. Lama-kelamaan jumlah magma segarnya telah cukup signifikan untuk yang mengalir dari bidang kontak tunjaman. Pengisian magma secara terus–menerus menyebabkan lapisan-lapisan kantung magma raksasa mulai menggelembung kembali dan mengangkat massa batuan diatasnya. Proses vulkano–tektonik pun terjadilah. Lantai kaldera terangkat naik secara asimetris mulai sekitar 33.000 tahun silam pada kecepatan sekitar 1,8/cm. Sehingga lantai kaldera sisi barat akhirnya menyembul di atas paras danau menjadi Pulau Samosir. Karena itu di Pulau Samosir masih dijumpai lapisan-lapisan endapan khas dasar danau. Pengangkatan asimetris ini membuat lapisan-lapisan endapan tersebut berkedudukan miring antara 5 hingga 8 derajat ke arah barat. Pengangkatan sejenis juga terjadi di lantai kaldera sisi timur, membentuk blok Uluan.

Namun kecepatan pengangkatannya lebih rendah, yakni hanya 0,5 cm/tahun sehingga ia tidaklah setinggi Pulau Samosir meski tetap menyembul di atas paras danau. Kemiringan lapisan-lapisan endapan di blok Uluan pun berlawanan dengan Pulau Samosir, yakni miring ke timur. Sebagai akibat dari pengangkatan Pulau Samosir dan blok Uluan maka lantai kaldera di antara keduanya berubah menjadi lembah sangat curam yang tetap tergenang air. Kini lembah itu dikenal sebagai Selat Latung.


Gambar 13. Bagaimana dampak Letusan Toba Muda terhadap tumbuh-tumbuhan hutan hujan tropis terlihat dalam simulasi ini. Bila semula hutan hujan tropis masih cukup rapat di kawasan Amerika selatan, Afrika, Asia selatan dan Asia tenggara sebelum letusan (atas), maka hanya dalam empat tahun pasca letusan hampir semuanya telah musnah (bawah). Sumber: Robock dll, 2008.

Selain mengangkat lantai kaldera hingga membentuk Pulau Samosir dan blok Uluan, magma segar yang mengisi kembali kantung magma raksasa Toba juga sempat keluar ke permukaan Bumi di beberapa titik. Di tepi kaldera sisi barat magma itu membentuk Gunung Pusukbukit (1.982 meter dpl) yang kini diklasifikasikan ke dalam gunung berapi aktif tipe B seiring adanya sumber uap air (fumarol), sumber gas sulfurdioksida (solfatara) dan mata air panas di lereng utaranya. Sementara di tepi sebelah utara terbentuk Gunung Tandukbenua (1.860 meter dpl) yang juga digolongkan ke dalam gunung berapi tipe B. Sedangkan di tepi selatan terbentuk kompleks kubahlava Pardepur yang terdiri dari sedikitnya empat kubah lava. Mata air panas juga dijumpai di sini. Dan di Pulau Samosir sisi barat, tepanya di antara Gunung Pusukbukit dan kompleks Pardepur, dijumpai bagian-bagian yang membumbung sedikit, mengindikasikan adanya kubah lava tersembunyi (cryptodome). Sementara di sisi timurnya khususnya di Semenanjung Tuktuk dan sebelah utaranya juga dijumpai kubah lava.

Apakah saat ini Gunung Toba masih aktif?

Antara ya dan tidak. Pada satu sisi Gunung Toba dikategorikan masih aktif. Hal itu ditegaskan lagi oleh hasil penelitian gabungan Rusia, Inggris dan Jerman barusan. Ia masih menyimpan magma di kantung-kantung magma raksasanya. Namun di sisi lain, Gunung Toba tidaklah seagresif gunung berapi super lainnya seperti Yellowstone (Amerika Serikat).

Kaldera Yellowstone telah berkali-kali diguncang rentetan gempa dan naiknya lantai kaldera, indikasi dari pergerakan fluida di perutbuminya entah berupa magma ataupun cairan hidrotermal lainnya. Sementara kaldera raksasa Danau Toba tidaklah seperti itu. Dan jika mengacu kepada sejarah letusan dahsyatnya, Gunung Toba membutuhkan waktu paling tidak antara 340.000 hingga 765.000 tahun untuk beristirahat dan menghimpun tenaga sebelum meletus sangat dahsyat kembali. Dengan Letusan Toba Muda terjadi pada 74.000 tahun silam, letusan dahsyat Gunung Toba yang selanjutnya barangkali akan terjadi 266.000 hingga 691.000 tahun dari sekarang.

Dimana Sinabung di Danau Toba

Meletusnya SInabung beberapa tahun lalu cukup mengagetkan, ya karena Gunung ini sebelumnya masuk klasifikasi gunung yang tidak aktif dipantau (gunungapi Tipe B). Gunung Sinabung sebelum meletus tahun2010 tidak menunjukkan keatifannya selama 400 tahun sebelumnya. Silahkan baca ulang disini Gunung Sinabung, bangun setelah tidur 400 tahun.

Gunung Sinabung ini menunjukkan aktifitasnya kembali pada Oktober-November tahuin 2013.


Lokasi Gunung Sinabung dan Kompleks Kaldera Toba

Perhatiklan luasan atau besarnya dimensi dari Kaldera Toba dan ukuran “Gunung Toba”. Model pembentukan Kaldera Toba yang terbentuk akibat amblasnya puncak “Gunung Toba”.Cerita serta dongengan besarnya letusan Toba ini diceritakan oleh banyak penulis.

Menurut model yang dibuat oleh Van Bamellen ini Gunung Sibayak merupakan bagian dari volkanisme kompleks “Tobanian”.

Program dan proyek mitigasi Gunung Api sekitar Toba ini tentunya tidak dapat mengabaikan peran-peran fenomena geologi disekitarnya. Termasuk Patahan Sumatera yang memotong tentunya.

Letusan Toba yang terakhir tercatat 700 000 tahun lalu diceritakan oleh Marufin dibawah ini
Letusan Toba 71 – 75 ribu tahun silam memang sungguh luar biasa.

Gunung ini melepaskan energi 1.000 megaton TNT atau 50 ribu kali lipat ledakan bom Hiroshima dan menyemburkan tephra 2.800 km kubik berupa ignimbrit, yakni batuan beku sangat asam yang memang menjadi ciri khas bagi letusan-letusan besar. 800 km kubik tephra diantaranya dihembuskan ke atmosfer sebagai debu vulkanis, yang kemudian terbang mengarah ke barat akibat pengaruh rotasi Bumi sebelum kemudian turun mengendap sebagai hujan abu.

Sebagai pembanding, erupsi paroksimal Tambora 1815 (yang dinyatakan terdahsyat dalam sejarah modern) ‘hanya’ menyemburkan 100 km kubik debu dan itupun sudah sanggup mengubah pola cuaca di Bumi selama bertahun-tahun kemudian, yang salah satunya menghasilkan hujan lebat yang salah musim di Eropa dan berujung pada kekalahan Napoleon pada pertempuran besar Waterloo.


Genersa terbentuknya Kaldera Toba menurut Van Bammelen. Perhatikan kompleks gunungapi ini, serta unung-gunung disekitarnya.

Kerikil (lapili) produk letusan Toba ditemukan hingga di India, yang berjarak 3.000 km dari pusat letusan. Keseluruhan permukaan anak benua India ditimbuni abu letusan dengan ketebalan rata-rata 15 cm. Bahkan di salah satu tempat di India tengah, ketebalan abu letusan Toba mencapai 6 meter.

Debu vulkanik dan sulfur yang disemburkan ke langit dalam letusan dahsyat selama 2 minggu tanpa henti itu membentuk tirai penghalang cahaya Matahari yang luar biasa tebalnya di lapisan stratosfer, hingga intensitas cahaya Matahari yang jatuh ke permukaan Bumi menurun drastis tinggal 1 % dari nilai normalnya. Kurangnya cahaya Matahari juga menyebabkan suhu global menurun drastis hingga 3 – 3,5º C dari normal dan memicu terjadinya salah satu zaman es. Rendahnya intensitas cahaya Matahari membuat tumbuh2an berhenti berfotosintesis untuk beberapa lama dan tak sedikit yang bahkan malah mati, seperti terekam di lembaran2 es Greenland.

Bagaimana dengan manusia? Ambrose (1998) berdasar jejak DNA manusia purba menyebut saat itu terjadi situasi “genetic bottleneck” yang ditandai dengan berkurangnya kelimpahan genetik dan populasi manusia. Bahkan dikatakan jumlah individu manusia saat itu (tentunya dari generasi homo sapiens awal seperti homo sapiens neanderthalensis dan rekan-rekannya) merosot drastis hingga tinggal 10 % saja dari populasi semula.

Perhatikan ketinggian topografinya dan ukuran panjang dan lebar kaldera Toba, serta seberapa besar “Kompleks Gunung Toba” ini.

Bencana lingkungan akibat erupsi Toba ini diduga membuat homo neanderthalensis berevolusi menghasilkan individu yang lebih lemah. Sehingga ketika katastrofik berikutnya terjadi, yakni pada 12.900 tahun silam di ujung zaman es tatkala asteroid/komet berdiameter 5 km jatuh ke Bumi dari ketinggian awal yang rendah (mendekati horizon) sehingga benda ini meledak pada ketinggian 60 km di atas Eropa – Amerika sembari melepaskan energi 10 juta megaton TNT, neanderthal tak sanggup lagi bertahan dan punahlah ia bersama kawanan mammoth sang gajah raksasa zaman es.

Danau Toba sekarang ini, apakah masih aktif? Ya. Bekas letusan berskala kecil dan kubah lava baru pasca erupsi hebat itu masih dapat dijumpai di kerucut Pusukbukit di sebelah barat dan kerucut Tandukbenua di sebelah utara. Terangkatnya Pulau Samosir hingga 450 meter dari elevasi semula (yang dapat dilihat dari lapisan2 sedimen danau di pulau ini) juga menunjukkan bahwa reservoir magma Toba telah terisi kembali, secara parsial. Studi seismik menunjukkan di bawah danau Toba terdapat sedikitnya dua reservoir magma di kedalaman 40-an km dengan ketebalan 6-10 km.

Kapan Toba akan kembali meletus dahsyat? Kita tidak tahu. Namun dilihat dari historinya butuh waktu sedikitnya 300 ribu tahun pasca letusan besar Toba untuk kembali menghasilkan letusan katastrofik. Memang sempat muncul kekhawatiran Toba akan kembali menggeliat pasca guncangan gempa megathrust Sumatra Andaman 2004 yang mencapai 9,15 Mw itu dengan episenter hanya 300 km di sebelah barat danau, namun sejauh ini belum terbukti. Kekhawatiran ini bukannya tanpa alasan. Krakatau bangkit dari tidur panjangnya selama 200-an tahun tatkala gempa besar mengguncang kawasan Selat Sunda di awal 1883 dimana getarannya terasakan hingga ke Australia.


Referensi :

Chesner. 2011. The Toba Caldera Complex. Quaternary International (2011) pp 1–14.

Petraglia dkk. 2007. Middle Paleolithic Assemblages from the Indian Subcontinent Before and After the Toba Super–eruption. Science vol. 137 (2007) pp 114–116.

Chesner dkk. 1991. Eruptive History of Earth’s Largest Quaternary Caldera (Toba, Indonesia) Clarified. Geology vol. 19 (1991), pp. 200–203.

Hendrasto dkk. 2012. Evaluation of Volcanic Activity at Sinabung Volcano, After More Than 400 Years of Quiet. Journal of Disaster Research vol. 7 no. 1 (2012).

Rampino & Self. 1992. Volcanic Winter and Accelerated Glaciation Following the Toba Super–eruption. Nature, vol 359 (1992), pp. 50–52.

Rampino & Self. 1993. Climate–Volcanism Feedback and the Toba Eruption of ~74.000 Years Ago. Quaternary Research vol 40 (1993), pp. 269–280.

Rose & Chesner. 1987. Dispersal of Ash in the Great Toba Eruption, 75 ka. Geology, vol 15 (1987), pp. 913–917.

Schulz dkk. 1998. Correlation Between Arabian Sea and Greenland Climate Oscillation of the Past 110.000 Years. Nature, vol. 393 (1998), pp. 54–57.

Rampino. 2002. Super–eruptions as a Threat to Civilizations on Earth–like Planet. Icarus, vol. 156 (2002), pp. 562–569.

Robock dkk. 2008. Did the Toba Volcanic Eruption of ~74 k BP Produce Widespread Glaciation? Journal of Geophysical Research, submitted.

Sutawidjaja. 2008. Kaldera “Supervolcano” Toba. Majalah Warta Geologi vol. 3 no. 4 (2008) halaman 20–25.

Sutawidjaja dkk. 2013. The August 2010 Phreatic Eruption of Mount Sinabung, North Sumatra. Jurnal Geologi Indonesia vol. 8 no. 1 (Maret 2013) hal. 55-61.

Jaxybulatov dkk. 2014. A Large Magmatic Sill Complex Beneath the Toba Caldera. Science, vol 346 no. 6209 (31 October 2014), pp. 617-619.

Wahyudin, 2012. Vulkanisme dan Prakiraan Bahaya Gunung Api Anak Ranakah, Nusa Tenggara Timur. Jurnal Lingkungan dan Bencana Geologi vol. 3 no. 2 (Agustus 2012) hal. 89-108.

Wittiri. 2009. Indikasi Munculnya Kubah Lava Berdasarkan Rekaman Seismik. Jurnal Geologi Indonesia vol. 4 no. 2 (Juni 2009) hal. 93-101.

Wittiri. 2010. Gunung Sinabung Naik Kelas. Majalah Warta Geologi vol. 5 no. 3 (September 2010) hal. 36-39.





Tulisan ini diambil dari berbagai sumber.